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SLJMMARY 

A procedure  is  presented  for  effective  consideration  of  viscous  effects  in 
computational  development  of  high  Reynolds  number  flows.  The  procedure  is  based 
on  the  interpretation  of  the  Navier-Stokes  equations  as  vorticity  transport 
equations.  The  physics  of  the  flow  has  been  represented  in  a  form  suitable  for 
numerical  analysis.  Lighthill's  concept  for  flow  development  for  computational 
purposes  has  been  adapted.  The  vorticity  transport  equations  were  cast  in  a 
form  convenient  for  computation. A statement  for  these  equations  was  written 
using  the  method  of  weighted  residuals  and  applying  the  Galerkin  criterion. An 
integral  representation of  the  induced  velocity  was  applied  on  the  basis  of  the 
Biot-Savart  law.  The  numerical  procedure  developed  by  Hess  and  Smith  and  then 
refined  by  Argyris  and  Scharpf  was  used  in  computing  vortex  sheets  over  curved 
wing  surfaces.  Distribution  of  new  vorticity,  produced  at  wing  surfaces  over 
small  computational  time  intervals,  was  assumed  to be confined  to  a  thin  region 
around  the  wing  surfaces.  This  report  presents  thus  the  foundation  and  compo- 
nents  of  the  numerical  method. A following  report  will  present  the  details  of 
the  implementation of the  computational  procedure. 
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INTRODUCTION 

Theoretical  treatment of unsteady  viscous  flow  effects  and  extension of  the 
Reynolds  number  range  are of primary  concern  as  well  as  having  great  urgency 
from an application  point of view  (ref. 1). For higher  Reynolds  number  flows, 
the  effect  of  viscosity  becomes  increasingly  confined  to  narrow  regions  of  the 
wing  surface  and  laminar  flows  break  down  and  become  turbulent  (ref. 2 ) .  The 
treatment  of  viscous  effects  and  high  Reynolds  number  flows  is  still  not  pre- 
sented  well  in  theoretical  analyses  (ref. 1). 

The  Navier-Stokes  equations, as the  mathematical  model of unsteady  viscous 
flow,  contain  all  features  needed  for  the  solution  of  the  problem.  Advances, 
however,  in  establishing  practical,  meaningful  relations  between  vorticity  de- 
velopment  and  diffusion  have  been  slow.  Ingenious  schemes  have  been  applied 
in  seeking  to  obtain  solutions of the  Navier-Stokes  equations.  Solutions of 
this  kind  have  thus  far  been  confined  to  flows  of  relatively  low  Reynolds  num- 
bers,  and  they  are  still  inadequate  for  actual  aeronautical  applications  (ref. 
1).  By applying  suitable  discretization  and  computational  procedures,  attempts 
have  been  made  to  extend  the  solutions  to  higher  Reynolds  numbers  (ref. 3 ) .  The 
obtained  results  with  viscous  flows of moderately  high  Reynolds  numbers  have 
been  achieved  through  a  long  struggle  with  mathematics,  fluid  dynamics,  and te- 
dious  numerical  analyses. For instance,  presented  data  and  computer  plots,  al- 
though  giving  a  blurred  picture  of  viscous  flow  patterns,  have  been  of  genuine 
interest  (ref. 4). 

Since  the  finite-element  methods  are  well  suited  for  theoretical  treatment 
of unsteady  viscous  flows  past  bodies of complex  geometry,  and  since  config- 
urations of finite-element  meshes  can  be  suitably  clustered  in  regions  of  sig- 
nificant  changes  in  the  flow  patterns,  there  has  been a vivid  interest  and  much 
work  done  in  this  area  (ref. 5 ) .  There  is  expectation  that  finite-element  meth- 
ods  will  provide  a  solid  numerical  foundation  for  treatment  of  high  Reynolds 
number  flows.  The  purpose  of  this  report  has  been  the  presentation  of  such  a 
foundation. 

It  appears  that  four  different  formulations  have  been  commonly  applied  in 
conjunction  with  discretization  methods:  the  formulations  with  respect  to  stream 
function,  stream  function  and  vorticity,  velocity  and  pressure  (ref. 6), and  the 
Lighthill  vorticity-velocity  concept of flow  development  for  computational  pur- 
poses  (ref. 7). Interpretations  of  the  Lighthill  concept,  using  the  finite-dif- 
ference  method,  have  been  presented  by  Payne  (ref. 8) and  by  Schmall  and  Kinney 
(ref. 9), as  well  as  in  conjunction  with  an  integro-differential  formulation  by 
Wu (refs. 10  and 11). 

The  authors  are  deeply  grateful  to Dr. G.M.L.  Gladwell,  Professor,  Univer- 
sity  of  Waterloo,  Waterloo,  Ontario,  Canada,  and  to Dr. Ch. Hirsch,  Professor, 
University  of  Brussels,  Brussels,  Belgium,  for  the  kindly  provided  assistance 
and  specialized  expertise  for  the  research  toward  this  report.  Acknowledged 
gratefully  is  also  the  support  from  the  NATO  grant No: 1264  through  which  it 
was  possible  for  Professor  Hirsch  to  participate  in  the  research. 
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fluid  region, 
fluid  element 
wing  boundary 

SYMBOLS 

m 
containing  vorticity w(t+bt), m 

2 

2 

number of integration  points 
Lagrangian  interpolation  polynomials 

area  coordinates 

weighting  functions 
number of element  nodes 
nodal  shape  functions 

unit  vector  normal  to  the  wing  surface 
parameters 

position  vector  relative  to  dA or dS  respectively;  also  a  distance,  m 
element of a  vortex  sheet 
time,  sec 
unit  vector  tangent  to  the  wing  surface 
subsequent  time-step,  sec 
uniform  onset  velocity  of  the  fluid  in  region A; constant  in  time, 
m/sec 
nodal  values  of  velocity,  m/sec 

no-slip  velocity,  m/sec 

velocity  which  does  not  satisfy  the  no-slip  condition  at  the  begin- 
ning of iteration,  m/sec 
induced  velocity  due  to  vortex  sheet,  m/sec 

induced  velocity  at  a  point  in  the  fluid,  m/sec 

additional  induced  velocity,  m/sec 

a  function 
weights 

Cartesian  coordinates 
nodal  values of vortex  sheet  intensity,  m/sec 

vortex  sheet,  m/sec 



kinematic  viscosity, m /sec 2 
V 

S , n  element  local  coordinates 

P uniform  density,  kg/m 
3 

w 
j 

vorticity  at  a  finite-element  node,  l/sec 

w (t> vorticity,  l/sec 
w* additional  vorticity  during  time  6t,  l/sec 

w *  undetermined  parameters 
k 

Matrix  Symbols 

[*I convection  coefficient  matrix 

{Ne finite-element  vector  containing  wing  boundary  conditions 

[CI  vortex  sheet  coefficient  matrix 
{ F l  a  vector 
{Y I unknown  vector 
[J 1 Jacobian 
Em1 mass  matrix 
[S 1 diffusion  matrix 

Subscripts 
e  over  a  finite-element 
f.e.  finite-element 
i  element  node 

X,  Y  partial  derivatives  with  respect  to  x  and  y  respectively 
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THE MATHEMATICAL  ANALYSIS 

In  unsteady  viscous  flows  around  wing  boundaries,  there  exists  a  very  nar- 
row  region  in  which  gradients  of  flow  field  variables  and  influence  of  viscous 
forces  are  very  large.  At  higher  Reynolds  number  flows,  and  flows  around os- 
cillating  wings  in  particular,  the  situation  is  even  more  complicated.  The 
proper  solution  requires  consideration  of  the  entire  flow  field  around  the  wing. 
There  is  a  need of a reasonably  efficient  and  accurate  method  for  treatment  of 
such  flows.  In  principle,  the  time-dependent  Navier-Stokes  equations,  as  the 
mathematical  model,  contain  all  the  features  needed  for  the  solution  of  the 
laminar  and  turbulent  aspects  of  the  flow.  The  interpretation  of  these  equa- 
tions  as  vorticity  transport  equations  extends  Helmholtz's  equations  to  vis- 
cous  flows  (refs.  12  and 13). 

Numerical  methods  of  solution  appear  to  provide  the  only  hope  of  producing 
quantitative  results.  The  procedure  described  below  offers  the  foundation  of 
such  an  approach.  For  reliable  results  about  the  viscous  region  around  the 
wing,  the  Lighthill  concept  of  flow  development  for  computational  purposes 
(ref. 7) has  been  adapted  here.  It  is  thus  important  to  provide  for  the  prop- 
er  inclusion  of  vorticity  in  the  numerical  analysis  of  the  field  variables  of 
the  complete  flow. 

Summary  of  the  Computational  Procedure 

The  vorticity  transport  equations  were  cast  in  a  form  convenient  for  compu- 
tation  (refs.  14  and 15). The  computation  is  considered  unsteady  in  the  sense 
of  being  suitable  for  time-stepped  solutions.  A  statement  for  these  equations 
was  written  using  the  method of weighted  residuals  and  applying  the  Galerkin 
criterion  (see  appendix A). From  the  discretized  form  of  the  equations,  finite- 
element  equations  were  assembled  and  summed  over  all  elements  forming  thus  the 
global  system  of  equations  for  the  complete  flow  region.  The  discretization  in 
finite-element  form  of  the  vorticity  transport  equations  resulted  in  a  system 
of  differential  equations  with  respect to time.  These  equations  can  be  solved 
with  respect  to  the  time  variable  using  a  finite  difference  technique  (ref. 5). 
Finite-elements  in  the fluid region  contain  vorticity,  since  vorticity  will  be 
found  only  in  that  portion  of  the  fluid  region  which  is  discretized  by  finite- 
elements. 

An integral  representation  of  the  induced  velocity  at  finite-element  nodes 
due  to  the  vorticity  distribution  was  applied  on  the  basis  of  the  Biot-Savart 
law.  Details  are  shown  in  appendix B. The  numerical  procedure  developed  by 
Hess  and  Smith  (ref.  16)  and  then  refined  by  Argyris  and  Scharpf  (ref.  17)  was 
used  in  computing  vortex  sheets  over  the  curved  wing  surface  (see  appendix C). 
The  refinement  intToduced  by  Argyris  and  Scharpf  involved  curvilinear  elements, 
in  place of  the  plane  elements  used  by Hess,and Smith  (see  appendix D). A 
Hermitian  interpolation  model  was  used  to  approximate  the  geometry  of  curvilin- 
ear  elements  between  nodes  defining  the  elements. A Lagrangian  interpolation 
model  was  used  to  describe  vortex  sheet  intensity  over  finite-elements.  Two 
types  of  finite-elements  were  applied  in  representing  the  flow  region  under  in- 
vestigation:  isoparametric  triangular  and  isoparametric  quadrilateral  finite- 
elements.  Surrounding  the  curved  wing  surface  are  quadrilateral  finite- 
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elements,  with  the  remainder  of  the  fluid  region  divided  into  triangular  fi- 
nite-elements of varying  sizes,  becoming  smaller  and  smaller  near  the  wing  sur- 
face.  Quadratic  shape-functions  were  utilized  for  both  isoparametric  triangular 
and  isoparametric  quadrilateral  finite-elements.  Details  are  shown  in  appendix 
E. 

Vorticity  transport  equations - In  three-dimensional  form  the  vorticity  trans- 
port  equations  can  be  written  in  fixed  coordinates  (ref.  13)  as 

am 
at -- 
- =  
- 

(O*V)I - (v*V)w "- + vv2w - 

dw 
dt In  the  case  of  two-dimensional  flow  (w-grad)v = 0 and - = vV2w,  i.e.,  the 

total  variation of vorticity  is  equal  to  the  rate  of  dissipation  of  vorticity 
through  friction  (ref.  12).  The  two-dimensional  form of equation (1)  is 

- 
- - - 

- = - (v.V)w + vv2, at 
aw 

" 

whereby  only  convection  and  viscous  conduction  take  place  (ref. 15). Equation 
(2) is  discretized  in  space  using  the  finite-element  method.  Over  each  finite- 
element,  the  vorticity  and  velocity  components  are  approximated  by  their  nodal 

wj 9 j '  j '  j '  
and  v  and  by  the  nodal  shape  functions  N  Then 

m 
v(S,rl) = N .  (S,rl)vj = {NIt{vIe 

j =1 1 

The  finite-element  is  defined  here  by  m  nodes.  The  element  shape  functions 
are  expressed  in  terms of the  local  coordinates (E,q), which  range  between 
unity  and  zero  within  the  finite-element.  The  coordinate  will  be  chosen 
to  be  normal  to  the  wing  boundary.  The  weighted  residual  statement  for  the 
vorticity  transport  equations  is  written  as 

In  equation (6) the  weighting  functions  of  the  method  of  weighted  residuals  have 
been  set  equal  to  the  finite-element  shape  functions, Ni, in  accordance  with 
the  Galerkin  criterion.  Applying  an  integration  by  parts  to  the  second-order 
viscous  terms,  the  expression  becomes 
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a a aNi aw aNi au 
1 at ax aY ay ay 1 1 dA [N. {* + - (uw) + - (vu) I + v {ax ax + - - 

The  expression  in  equation (7) is  discretized  in  finite-element  form.  Over  each 
finite-element,  the  vorticity  transport  equations  can be written  in  matrix  form 
as 

where  the  element  matrices  and  the  vector,  after  substitution  of  equations ( 3 ) ,  
(4), and (5) into  equation (7)  are  defined  as  follows: 

Here  equations (9-11) are  respectively  the  element  mass  matrix  and  the  convec- 
tion  and  diffusion  matrices.  Matrix [A] is  an  unsymmetric  matrix,  representing 
the  nonlinear  convective  terms  in  the  vorticity  transport  equations. It is  a 
function  of  the  no-slip  velocity  field v(t) corresponding  to  the  no-slip  con- 
dition.  Partial  derivatives  with  respect  to  x  and  y  are  indicated  by sub- 

scripts  x  or  y  respectively.  The  finite-element  vector {BI~, containing 
the  wing  boundary  conditions,  is  written  as 

It results  from  the  integration  by  parts.  Here 
m 

The  element  matrix [B] is  constant  in  time  and  is  computed  only  once  for  each 
element  and  then  stored.  The  contour  integral  is  not  evaluated  on  the  outer 
boundary  since  the  region  covered  by  finite-elements  contains  all  the  vorticity 
in  the  flow  and  therefore w is  identically  zero  at  the  outer  boundary. 

The  numerical  integration  used  to  evaluate  the  integrals of equations 
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(9-12)  is  carried  out  in  the  local  coordinate  system  of  the  finite-element, 
where 

dx  dy = det. [J] dg dn (13) 

is  used  to  transform  the  region  with  respect  to  which  the  integration  is  carried 
out. The vorticity  transport  equation,  in  the  form of equation (8), is  then 
solved  in  time  over  the  subsequent  time-step Bt using  a  finite-difference 
technique.to  obtain  a  new  distribution  of  the  vorticity  at  time  t+Bt,  which, 
in  general,  is  different  from  that  vorticity  distribution  which  is  known  at  time 
t. 

THE DEVELOPMENT  OF  THE  FLOW 

The  manner  of  progressing  from  the  velocity  and  vorticity  distribution  at 
an  initial  time  instant t to  the  vorticity  and  velocity  distribution  of  a  sub- 
sequent  time  instant (t+Bt) will  now  be  outlined.  Consider,  however,  that 
some  time t has  elapsed  since  the  fluid  was  set  in  motion  past  the  wing. 

The  progressing  in  time - At  time  instant t, the  flow  variables, v(t)  and 
w(t), are  assumed  to  be  known  and  that  the  no-slip  velocity  condition  is  sat- 
isfied  on  the  wing  boundary  c.  That  is,  in  solving  equation (8) the  no-slip 
velocity  field v(t) has  to  be  used.  Since  vorticity  is  a  measure of the  an- 
gular  momentum OF the  fluid  particles  in  motion,  in  the  two-dimensional  case 
the  vorticity w has  a  single  component,  perpendicular  to  the  plane  of  motion 
x  and  y. 

During  the  subsequent  time  interval  Bt,  the  flow  variables v(t) and 
w(t) are  advanced  to  their  new  values  at t+Bt. Through  convection-and  diffu- 
sion,  the  known  vorticity w(t)  is redistributed,  while  during  the  same  time 
interval,  6t,  new  vorticity  is  diffusing  into  the  fluid  from  the  wing  bound- 
ary  c  in  such  a  manner  that  the  no-slip  condition  is  satisfied. 

The  Biot-Savart  law - Consider  first  the  redistribution  of  the  known  vorticity 
w(t) through  convection  and  diffusion.  By  solving  equation (S), the  redistri- 
bution  of o(t) at t+Bt is  given  as w(t+bt). Then  the  induced  velocity, 
which  coexists  along  with  the  vorticity w(t+Bt), is  given  by  the  Biot-Savart 
law  as 

w(t+Bt) x  r 
v (t+6t) = 1 - , l 2  

- 
21T dA 

"w r - 
where  the  integration  is  over  the  whole  region of the  vorticity  distribution. 
Here r is  a  position  vector  relative to the  fluid  element dA containing  vor- 
ticity- w (t+Bt) . 

Conversely,  if  vJt+6t)  is  the  induced  velocity  at  a  point  in  the  fluid, 
the  vorticity  at  that  point  is  by  definition 

- w(t+bt) = - v x %(t+6t) 
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Here,  s(t+6t)  is  computed  by  numerically  integrating  equation  (14)  over  each 
finite-element  containing  vorticity  and  summing  their  individual  contributions. 

Development  of  the  vorticity - In  general,  the  induced  velocity v (t+6t), 
resulting  from  the  vorticity  as  obtained  from  equation (8), has a non-zero  slip 
component  at  the  wing  boundary.  Therefore,  the  velocity  v(t+bt)  does  not,  in 
general,  satisfy  the  no-slip  boundary  condition  on  the wing surface  at  the  be- 
ginning of the  iteration  process.  The  difference  from  the  no-slip  condition 
can  be  attributed  to  some  additional  vorticity  w*(t+Bt),  produced  at  the  wing 
surface  over  the  time  step  6t  but  which  was  not  included  when  the.induced  ve- 
locity  was  computed,  i.e., 

"w 

w(t+Bt) + w *  (t+6t) = v x <(t+Gt) + x %* (t+6t) - 

Accordingly,  any  existing  velocity  field  can  be  regarded  as  containing  two  in- 
duced  velocity  vectors, v (t+6t)  and  &,(t+bt). The  complete  velocity  field 
at t+bt, at  any  point  in  the  fluid,  can  be  defined  (refs. 7, 18,  and  19)  as 

"w 

- v(t+bt) = <(t+bt) + %,(t+6t) + (16) 

The  velocity  v(t+bt),  defined  by  equation  (16),  should  satisfy  the  no-slip 
condition  at  the  wiKg  surface.  The  induced  velocity v (t+6t),  obtained  from 
viscous  considerations,  is  unequal  to  zero  at  the  wing  surface.  It  is  impor- 
tant  to  consider  that  in  the  framework  of  the  concept of computational  flow  de- 
velopment,  used  in  obtaining  the  solution  for  the  flow  by  numerical  means,  we 
simulate  the  flow of vorticity  in  the  given  unsteady  viscous  flow  by  introduc- 
ing  elements  of  irrotational-  flow.  The  additional.induced  velocity ~*(t+6t), 
although  calculated  from  irrotational  flow  considerations,  is a viscous  effect, 
and  it  is  rotational  by  definition. It is  also  unequal  to  zero  at  the  wing  sur- 
face. 

"w 

Consider  now  the  resulting  tangential  velocity  at  the  wing  surface  (ref. 7), 
before  the  new  vorticity  w*(t+dt)  was  accounted  for.  Since  it  may  not  satis- 
fy  the  no-slip  condition  there,  it  appears  that  just  enough  new  vorticity 
w*(t+6t)  must  have  been  diffused  at  the  wing  surface  during  the  time  interval 
tit, that  the sum of the  tangential  components of the  induced  velocities  due  to 
w(t+bt)  and  w*(t+6t)  and  the  onset  velocity  will  lead  to  zero  slip.  Corre- 
spondingly,  equation  (16)  may  be  rewritten  for  the  tangential  components of the 
involved  velocities  on  the  wing  surface.  Upon  rearranging  the  resulting  equa- 
tion  one  obtains 

I t L*(t+6t) = - - t . ["w v (t+6t) + UJ 

In sum, given  the  vorticity  w(t+bt)  from  the  solution of equation (8), 
the  induced  velocity  L(t+6t)  and  the  velocity  X(t+dt)  can  be  determined 
from  equation  (16).  The  velocity  v(t+6t),  however,  may  not  satisfy  the no- 
slip  condition  on  the  wing  surface-  c.  Therefore,  an  additional  distribution 

9 



sf vorticity 
tion w (t+6t) 
turbation vel 

w*(t+6t)  must  be  combined  with  the  existing  vorticity  distribu- . The  induced  veiocity  s(t+6t)  can  be  regarded  also  as  a  per- 
.ocity  (refs.  18'  and  19) . 

Intensity  of  the  new  vorticity - As iteration  for  time-step  t+6t  begins,  the 
tangential  components of velocity  v(t+bt)  at  the  wing  surface  may  be  unequal 
to  zero.  There  exists  then  a  discoztinuity  in  the  tangential  velocity  compon- 
ent  at  the  wing  surface,  equal  to  the  difference  between  the  no-slip  velocity 
and  the  velocity  component  t=v(t+6t)..  By  definition,  a  surface  across  which 
tangential  velocity  changes  abruptly  is  a  vortex  sheet  (ref. 18). The  concept 
of  a  vortex  sheet  is  introduced  now  as  an  approximation,  allowing  the  calcula- 
tion of the  additional  vorticity a*. Following  reference  18,  with  the  in- 
duced  velocity  v  (t+6t)  due  to  the  vortex  sheet  y(t+6t),  the  velocity  at  a 
point P in  the  fluid  can be written  now  as 

" 

-Y 

v  (t+6t) = vp (t+6t) + 1 P (t+bt) + 5 - (18) - a  

Following  the  derivation  of  the  vortex  sheet  (ref.  18),  the  induced  veloc- 
ity  due  to  the  vortex  sheet  at  a  point I ,  just  outside  the  wing  surface,  and 
the  velocity  at  a  point 0, just  inside  the  wing  surface,  may  be  written  as 

v  (t+6t) = v*(t+6t) + - y(t+bt) x n 
-Y -Y 2 -  
I 1 

and 

v  (t+6t) = v*(t+6t) - y(t+6t)  x E 0 1 
-Y -Y 

(20) 

respectively. Since  a  straight  element  of  vortex  sheet dS  cannot  induce  ve- 
locity  at  its centroid  (ref. 18),  the  velocity  v*(t+Gt) is  the  velocity  in- 
duced  at  its  centroid  by  the  rest  of  the  vortex  sheet,  excluding  the  infinites- 
imal  element  dS.  Moreover,  the  second  terms  on  the  right-hand  side of  equa- 
tions (19) and (20) are  the  velocities  induced  at  points I and 0 respective- 
ly  by  the  element  dS  (ref. 18). 

-Y 

If  a  general  point  P  is  now  identified  as  point 0, equation (20) may 
be substituted  into  equation (18) as 

v  (t+6t) = v  (t+6t) + v*(t+6t) - 0 0 - - y(t+6t) x  n + LJ- 1 
- -w "f - 

Here  n  is  the  unit  vector  normal  to  the  wing  surface.  Furthermore,  by  the 
above  xefinition of the  vortex  sheet,  the  velocity  at  point 0 is  set  equal  to 
the  no-slip  velocity, 

Taking  the  tangent  component  of  equation (22) and  rearranging 
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1 0 - t v* ( t+6t )  - - y ( t + b t )  = - t (L + v+Jt+6t)) 
-Y 2 - 

The velocity  v*(t+6t)  has  been  given  (ref.  18) as 
-Y 

which i s  
sheets .  

- t o  

y( t+bt )  x - r 
dS 

--Y 

the  two-dimensional  form  of the  Biot-Savart  induction law for   vor tex  
Subst i tut ing  equat ion (24) into  equat ion (23) 

Equation (25) i s  so lved   to   ob ta in   the   vor tex   shee t .  The in tegra t ion  is  car r ied  
out  over  the wing boundary ( re f .   18) .  The  amount of new vor t ic i ty   w*( t+6t ) ,  
d i f fus ing  from t h e  wing surface  during  the  t ime  interval 6 t ,  i s  found  using 
the  vortex  sheet  y(t+Bt).  A s u f f i c i e n t  amount of  new v o r t i c i t y  i s  created 
c lose   t o   t he  wing boundary  such t h a t  when combined wi th   the   ex is t ing   vor t ic i ty  
w(t+bt),   the  no-slip  condition i s  insured.  This  condition,  explained by Light- 
h i l l   ( r e f .  7) ,  insur ing   tha t   the   ve loc i ty  normal t o   t h e   a i r f o i l   s u r f a c e  w i l l  be 
zero, i s  expressed  analyt ical ly   here  as follows 

t + B t  

Nearly similar in t e rp re t a t ions   o f   t h i s   cond i t ion  have  been  expressed  analyti- 
ca l ly   in   re fe rences  (9-11). S ince   d i f fus ion   of   vor t ic i ty  from a vortex  sheet 
can  be  considered as a time-dependent  problem,  the  distribution  of new vor t ic -  
i t y  w*(t+6t)   in   the  f luid  could have  been car r ied   ou t   us ing   the   f in i te -e le -  
ment v o r t i c i t y   t r a n s p o r t  program described  previously.  Since  the  process is 
i t e r a t i v e ,  it is ca r r i ed   ou t   un t i l   t he   ve loc i t i e s  around  the wing are   equal   to  
zero  for  a given  numerical  accuracy. However, i n   t h i s   r e p o r t  an a l t e r n a t i v e  
approach w i l l  be  used. 

When it can  be assumed tha t   d i f fus ion  dominates  only  the  vorticity 
u.*(t+6t)  over  convection  near  the wing surface and no t   t he   vo r t i c i ty   w( t+b t )  
and provided  that   the  t ime-step is  s u f f i c i e n t l y  small ( r e f .  7 ) ,  the  new vor t ic -  
i t y  w*(t+6t) becomes ( r e f .  15) 

-(nor) -- 1 
- Y ( t+6t )  e 4v6t 

" 

w*(t+bt) - (lTv6t) 2 
2 

Thus, included  in  equation (27) i s  the   i dea   t ha t  a t  time t + d t ,  t h e   v o r t i c i t y  
w*(t+bt) on t h e   l e f t - s i d e  o f  the  equat ion and the   vor tex   shee t   y ( t+dt ) ,  on t h e  
right-hand  side,  occur  simultaneously. The range  of  validity  of  equation (27) 
is  confined to the  region  near  the surface where viscous effects are much 
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larger  than  the  vorticity  convection  (i.e.,  a  computational  thickness, y, 
much  smaller  than  the  boundary  layer  thickness, 6 )  and  for  times  when  the  time 
derivative  of  diffusion  is  much larger-than the  convection  of  vorticity  (i.e., 
when U,6t is  much  smaller  than  the  chord  multiplied  by  6/y). 

DETAILS OF THE  SOLUTION  PROCEDURE 

The  Vorticity  Transport  Equations 

The details of  the  implementation  of  the  solution  of  the  vorticity  trans- 
port  equations,  in  the  form of the  discretized  equation ( S ) ,  can be summarized 
as  follows : 

the  global  mass  matrix  [m]  is  constant  in  time  for  a  given  finite- 
element  mesh.  It  is  assembled  and  stored  in  a  symmetric  band-storage 
mode  at  the  beginning of the  numerical  procedure.  This  matrix  is 
computed  using  numerical  integration  and  then  decomposed  into  equiva- 
lent  lower and upper  triangular  matrices  using  Cholesky  decomposition. 

the  time  rate of change of vorticity  vector { a t J  is  obtained  using 
a  finite-difference  scheme;  the  initial  procedure  involved  the  Euler 
method  with  later  use  of  the  trapezoidal  method  and  the  fractional- 
step  method. 

am 

the  finite-element  convect4on  coefficient  matrix  [A]  is  dependent  on 
time  due  to  the  velocity  terms  and  must be evaluated  using  numerical 
integration  each  time  the  vorticity  transport  equations  are  solved. 

the  finite-element  diffusion  coefficient  matrix  [SI  is  constant  in 
time. It is  computed  using  numerical  integration  at  the  beginning 
of the  computational  procedure  and  then  stored. 

the  matrix [B] is  assembled  for  the  wing  boundary  finite-elements 
only  and  is  evaluated  using  numerical  integration;  it  is  also  con- 
stant  in  time  and  stored  at  the  beginning of the  computational  pro- 
cedure. 

Computation of the  Additional  Vorticity 

The  additional  vorticity  can  be  distributed  using  the  finite-element  vor- 
ticity  transport  program  or  the  solution  due  to  Lighthill'ls  approximation, 
equation (27). The  first  approach  can  easily  be  implemented  in  the  computer 
code.  Hence,  in  what  follows  in  this  report,  only  the  way  of  applying  equa- 
tion (27) will  be  described.  Assumptions  can  be  made  that  the  distribution  of 
new  vorticity  w*(t+6t),  produced  at  the  wing  surface  over  a  small  time-inter- 
Val 6 t , is-  confined  to a thin  region  around  the  wing, 
ed  by  diffusion. 

The  distribution of new  vorticity  determined  using 
tion,  as  expressed  by  equation (27), is  proportional  to 

and  that  it  is  dominat- 

Lighthill's  approxima- 
the  vortex  sheet. A 
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vortex  sheet  may  be  computed  from  equation ( 2 5 ) .  The  second  term  on  the  left- 
hand  side  of  equation (25) indicates  that  the  singularity  has  been  properly  con- 
sidered.  The  form of the  right-hand  sides  of  both  equations  (17)  and (25) is of 
interest.  Accordingly,  the  right-hand  side of equation (25) is  the  negative of 
the  resulting  slip  velocity  &(t+6t)  at  a  point of the  velocity  field - v(t+dt). 
This.  slip  velocity  has  been  defined  (ref. 18) as  a  discontinuity  in  the  tangen- 
tial  component of the  velocity  at  the  wing  surface. 

Equation (25) is  solved  numerically  at  a  finite  number of points  on  the 
wing  surface.  The  vortex  sheet  y(t+Bt)  is  described  by  these  finite  number 
of points  and  suitable  interpolation  functions  (refs.  16  and  17).  The  inte- 
gral  in  equation (25) is  evaluated  using  a  Gauss-Legendre  quadrature  and  as- 
sembled  for  all  nodes  on  the  wing  surface.  The  resulting  system  of  equations 
is  solved  for  vortex  sheet  y(t+6t)  using  a  LU-decomposition.  Once  the  vor- 
tex  sheet  has  been  computed,  the  distribution of additional  vorticity  is  ob- 
tained.  As  it  will  be  shown  in  the  follow-up  of  this  report,  the  actual  com- 
putation of the  additional  vorticity  may  be  confined  to  only  the  nodes of the 
first  few  layers of finite-elements  around  the  wing. 

At  time t+Bt, the  new  vorticity  w*(t+Bt)  is  combined  with  the  pre- 
viously  computed  vorticity  w(t+Bt),  with  the  result  becoming  a  new  estimate 
of the  existing  vorticity w(t+Bt) at  time t+Bt or 

w(t+Bt) f w(t+6t) + w*(t+Bt) (28) 

Equation (28) is  evaluated  at  all  finite-element  nodes  where  the  new  vorticity 
a* (t+Bt) was  computed. 

The  new  estimate  for  the  existing  vorticity  w(t+dt)  is  then  used  to re- 
calculate  the  velocity  v(t+Bt)  from  equation (16). This  velocity  should  sat- 
isfy  the  no-slip  condition  at  the  wing  boundary.  However, it may  not,  since 
the  additional  vorticity  distribution  w*(t+6t)  is  only  an  estimate  based  on 
the  calculated  value of the  vortex  sheet  y(t+6t).  Thus,  if  it  does  not, 
equation (25) can be solved  again  for  a  new  vortex  sheet  y(t+Gt),  with  the 
subsequent  solutions  of  equations (27) and (28) giving  still  another  estimate 
of the  existing  vorticity w(t+Bt) at  time  t+6t.  Equations ( 2 5 ) ,   ( 2 7 ) ,  and 
(28) may  be  iterated  in  this  manner  until  a  sufficient  amount of new  vorticity 
w*(t+6t)  is  combined  with  the  existing  vorticity  w(t+Bt)  to  enforce  the no- 
slip  condition  at  the  wing  boundary.  Once  the  no-slip  condition  on  the  wing 
boundary  is  satisfied,  the  solution  is  complete  and  the  computational  proced- 
ure  may  be  extended  over  the  next  small  time-step,  t+6t;  starting  with  the 
solution of the  vorticity  transport  equations.  Figure  (1)  illustrates  the 
main  sequences of computations  in  the  computational  procedure. 

CONCLUDING  REMARKS AND RECOMMENDATIONS 

The  presented  procedure  offers  an  approach  toward  effective  representa- 
tion of viscous  effects  in  the  computational  development of high  Reynolds  num- 
ber  flows.  Efforts  were  made  to  represent  the  physics  of  the  flow  in  a  form 
suitable  for  numerical  analysis,  to  contain  the  features  needed  for  the 
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solution,  and  to  optimize  codes  to  reduce  computer  costs.  Since  finite-ele- 
ment  methods  are  considered  as  computationally  effective,  it  is  expected  that 
they  will  facilitate  extending  not  only  the  range of Reynolds  numbers of prac- 
tical  applications,  but  they  hold  promise  for  good  results  from  three-dimen- 
sional  analyses. 

The  numerical  difficulties  increase  as  the  Reynolds  numbers  increase;  an- 
alytical  difficulties  adversely  affecting  accuracy.  Computer  runs  were  made 
to  test  the  range of application of the  program  and  the  accuracy of the  results 
for  higher  Reynolds  numbers.  These  tests  have  required  a  considerable  amount 
of computer  execution  times.  Portions of the  program  need  significant  optim- 
ization  in  order  to  reduce  computer  cost.  The  computation,  for  instance, of 
the  induced  velocity  from  the  Biot-Savart  law  still  involves  a  large  portion of 
the  computer  time  for  a  time-step.  Significant  instabilities  occur  in  the  nu- 
merical  integration  which  are  related  to  the  size of the  time-step of  integra- 
tion.  Integration  and  computational  techniques  have  been  employed  in  the  pro- 
gram  with  the  objective of increasing  the  integration  time-step.  It  is  expected 
that  the  implementation of the  fractional-step  method  will  further  reduce  com- 
puter  execution  times.  The  numerical  treatment of the  wake  region  requires  the 
application  of  the  correct  boundary  conditions  at  the  downstream  end of the  fi- 
nite-element  gridwork.  It is thus  necessary  that  these  conditions  account  for 
the  propagation  of  vorticity  over  the  finite-element  gridwork. 

Particularly  promising,  for  instance,  is  the  Boundary-Element  Concept  which 
was  developed  just  recently  as  a  refinement  in  the  field of discretization  tech- 
niques. It has  also  been  necessary  to  determine  how  the  numerical  results  sim- 
ulate  the  actual  flow  at  comparable  Reynolds  numbers.  There  is  available  only 
a  very  limited  amount of suitable  experimental  results  for  comparisons. How- 
ever,  the  prospects  for  such  comparisons  have  improved  since  interest  in  suit- 
able  experimental  research  has  also  increased. 
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I Start I 

f 

Assemble  finite-element  mesh 
I 

Assemble  constant  matrices [m], e 

[SIe, [BIe,  and  [C] from 
equations (9), (ll),  and 

(C3) respectively 

f 
I t = €it I 

Initialize  flow  variables I -  v(t) = and  w(t) = O 

v 
Solve  the  vorticity  transport 
equation,  equation ( 2 ) ,  for 
the  vorticity  distribution 

w (t+bt) 

L - 
1 

Solve for the  induced  velocity 
v (t+bt) at  the  wing  surface, 

equation (6) 
"w 

~- t 
Solve for the  velocity 

- v(t+bt)  at  the  wing  surface, 

J. 
equation  (16) 

Output  the  velocity  field 
v(t+bt)  and  the  vorticity 

Solve  for  the  velocity  field 
- v(t+ t) over  the  entire 
discritized  fluid  region, 

equation  (16) 
~~ ~ 

4 
Solve  for  the  induced  velocity 
field vJt+bt) over  the  entire 

discretized  fluid  region, 
equation  (14) 

Figure 1. The main  sequence of computations  in  the  computational procedure. 
15 



no 

End solution ? 
- 

Yes no 
1 Solve  for  the vortex sheet I I stop 1 
I y(t+6t), equation (25) I 

I Solve  for  the additional 
vorticity distribution w (t+6t) 

equation (27) 

4 I Solve for the new vorticity 

distribution w ( t + 6 t ) ,  

I equation (28) 

Figure 1, Concluded. 
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APPENDIX A 

The  Vorticity  Transport  Equations 

The  vorticity  transport  equations  are  discretized  in  space  employing  the 
finite-element  method.  Element  equations  are  defined  from a functional  and 
then  assembled  to  form a matrix-system  of  first-order  differential  equations. 
This  system  governs  the  fluid  region.  Using  the  method  of  weighted  residuals, 
a statement  for  the  vorticity  transport  equations  can  be  written  as 

The  function W is  approximated  as 

m 

k= 1 
w =  I2 w: 

where  the  are  arbitrary  parameters  and  the Mk are  weighting  functions. 
On  substitution of equation  (A2)  into  equation  (Al), the  statement  becomes 

Since  the  parameters w, are  arbitrary k 

In  equation  (A4),  the  highest  order  derivatives  are  the  second-order  terms 
multiplied  by v, the  viscous  terms.  Taking  only  the  viscous  terms  from  equa- 
tion (A4) and  applying a transformation  by  integration  by  parts  (ref. 5) re- 
sults  in 
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On substitution of equation (AS) back  into  equation (A4), the  statement  for 
the  vorticity  transport  equations  becomes 

m 

k= 1 
- v  A Mk*dc = 0 an 

where  the  highest  order  derivatives  are  now of the  first-order.  Applying  the 
Galerkin  process  to  equation  (A6),  the  weighting  functions  Mk  are  set  equal 
to  the  finite-element  shape  functions . Ni 

The  first  space  derivatives of the  vorticity  are  determined  from  equations 
(E13)  as  follows - 

and 

Similarly,  the  vorticity  time-derivative  is  written  as 

Substitution  of  equations  (A7-A9)  and  equations  (E13-E15)  into  equation  (A6) 
results  in  a  matrix-system of differential  equations  over  one  finite-element  as 

The  element  mass  matrix  [mIe  is  given  as 

and  the  element  convection  and  diffusion  matrices  are  given  as 
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respectively.  The  element  vector {BIe contains  the  wing  vorticity  boundary 
conditions 

The  integration  of  equations  (All-A14)  being  very  difficult,  it  is  therefore 
replaced  by  a  numerical  integration  procedure  as  follows 

Here  the  terms  w(ek,qk)  are  the  integration  weights  corresponding  to  the  total 
number of g integration  points  ck,qk.  The  integration  over  a  finite-element 
is  carried  out  in  the  local  coordinate  system of the  finite-element.  To  trans- 
form  a  region  to  the  one  in  which  the  integration  is  carried  out,  i.e.,  from  the 
x,y  plane  to  the 5,q plane 

dA = dxdy = det [J]  dgdq  (A161 

The  finite-element  matrices of equations (All-A14) are  thus  numerically  evalu- 
ated  as 
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and 

respectively.  In  equation (A20) the  integration  is  over  the  side of the  finite- 
element  in  contact  with  the  wing  surface.  For  the  quadrilateral  finite-element 
this  side  corresponds  to q = -1 (see  figure E . 2 ) .  The  derivatives  in  the 
Cartesian  coordinate  system of  the  element  shape  functions  are  obtained  in 
terms  of  their  local  derivative  with  equation (ES).  

The  element  equations  are  now  assembled  to  form  a  global  matrix-system  of 
equations,  which  governs  the  fluid  region  as 

Equation  (A21)  is  then  solved  in  time  using  a  finite-difference  technique  to  ob- 
tain  a  new  distribution of vorticity. 
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APPENDIX B 

The  Velocity  Field 

The  velocity.field - v(t+dt) of the  fluid  region is defined  in  general  as 

The  induced  velocity v (t+6t)  is  given  by  the  Biot-Savart  law.  It  is  due  to 
the  vorticity  distribution  w(t+6t)  in  the  fluid  region.  The  velocity 5 
is  the  onset  velocity.  It  is  constant  in  space  and  time.  Defined  by then val- 
ues  at  all  finite-element  nodes  in  the  fluid  region,  the  velocity  components  at 
a finite-element  node i are  given  as 

3 ’  

ui(t+6t) = urn + ui(t+6t) 

v (t+6t) = vm i + vi(t+dt) 

Each  finite-element  will  contribute  toward  the  induced  velocity  at a finite- 
element  node i due  to  the  vorticity  distribution  over  it.  For  finite-element 
Ai, the  contributions  to  the  induced  velocity  components  are  obtained  as 

0. (t+6t) (yi-y.) 
dAj 

Ir.. 12 
“-1 J 

and 

i w. (t+6t) (xi-x.) 
vw(t+6t) = dA 

Ir.. l 2  j 
“-1 3 

with 

Ir. . I = (xi-xjj2 + {yi-yj) 2 
-1 

The  individual  velocity  components  are  summed  over  a1 
to  give  the  complete  induced  velocity  at  node i as 

1 finite-elements ( 

(B3)  

(B5) 

f. e.) 

2 1  



The  integrals of equations (B3) and (B4) are  integrated  numerically,  using 
equations (AX) and (A16), as  follows 

The  vorticity w(Sk,qk) and  the  coordinates  X(ck,qk) and Y(ck,nk)  are ob- 
tained  from  equations  (El), (E2), and  (E13).  For  the  quadrilateral  finite-ele- 
ment  and  the  triangular  finite-element,  the  terms of the  Jacobian [J] are 
computed  from  equations (E7) and  (Ell)  respectively. 
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APPENDIX C 

The  Vortex  Sheet 

The  vortex  sheet  is  determined  using  a  numerical  technique  developed  by  Hess 
and  Smith  (ref. 16) and  which  was  refined  by  Argyris  and  Scharpf  (ref. 17). 
Collecting  the  nodal  values y of  the  vortex  sheet  intensity  into  the  vector 
{y), equation  (25)  may  be  written  in  matrix  form  as 

Solving  equation (Cl) for  the  unknown  vector {y l  results  in 

The  manner  in  which  the  terms of the  coefficient  matrix [C] are  determined  is 
now  summarized.  Equation  (25)  is  applied  to  one  of  the  curvilinear  element- 
nodes  and  is  then  integrated  around  the  wing-contour  c.  The  integration  around 
the  contour c is  accomplished  by  integrating  over  segments of contour  c,  de- 
fined by the  curvilinear  elements  and  then  summing  their  contributions.  For 
node  i-  and  curvilinear  element  c  the  terms of  matrix k 

where  the  components of the  vector 3 are  given  as 

and 

Here  the  parameters L are  the  Lagrangian  interpolation 
tions (D8). They  define  a  vortex  sheet of unit  intensity 
ment  c  The  position  vector r is  given  as 

j 

k’ -i k 

Ir. l 2  = (xi - xk12 + (yi - yk12 l k  

[ C] are  given  as 

(C3) 

polynomials of equa- 
over  curvilinear  ele- 
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The  terms  of  the  vector (F), on the  right-hand  side of equation ( C l ) ,  are 
determined  as 

Fi - - - t. (vu + s)i CC7) 
-1 

The  induced  velocity  is  obtained  from  equations (B7)  and ( B 8 ) .  Equations 
(C4) and (C5) are  integrated  numerically  as  follows 

and 

Here,  the  parameters Ek are  the  local  coordinates of the  integration  points 
with  weights  wk.  The  derivatives of the  Cartesian  coordinates  with  respect  to 
the  local  coordinate ( E ,  q) are  found  from  equation (D6) . 
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APPENDIX D 

Representation of the  Wing  Boundary 

The  wing  contour c is  divided  into a series  of  curvilinear  line-elements 
according  to  Arygris  and  Scharpf  (ref. 17). A Hermitian  interpolation  model 
is  used  to  describe  the  geometry  of  each  curvilinear  element. A Lagrangian 
interpolation  model  is  used  to  describe  the  vortex  sheet  intensity  over  each 
element.  Figure D..1 illustrates a single  curvilinear  element  with  the  vor- 
tex  sheet  of  intensity y acting  over  it.  Each  element  is  defined  by  three 
nodes. 

Figure  D.l  The  curvilinear  element  after,  Argyris  and  Scharpf  (ref.  17). 

The  geometry  of a curvilinear  element  is  defined  by  the  known  Cartesian 
coordinates  of  the  element  end-nodes  and  the  prescribed  tangential  directions 
at  those  nodes.  The  Hermitian  polynomials  used  are 

1 
1 4  

H = -  C 2 + 3 5 - E 3 )  

2 3  (Dl) 
H2 = L (-1.+ 5 + 5 - 5 ) 

4 
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Hg = 7 z ( 2  - 35 + t 3  1 

1 2 3  
H4 4 

= - ( t 1 + 5 - 5  - 5  1 

Here 5 .:is a local  coordinate  defined  over  the  curvilinear  element  ranging 
in  value  between -1 and +1. 

A local  coordinate  point 5 is  mapped  into  the  (x,y)  plane  by 

L 

The  measures of the  derivatives of x or  y  with 
the  element  are  given  by 

H1 

H2 

H3 

H4 
a 

respect  to 5 at  the  nodes of 

as  suggested  by  Argyris  and  Scharpf  (ref. 17). 
(ref.  17)  as 

and 

The  parameter qk is  defined 

(D4) 

For  an  arbitrary  point  on  a  curvilinear  element,  the  derivatives of x or  y  with 
respect  to 5 are  written  as 
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The  derivatives of the  Hermitian  polynomials  with  respect  to 5 are  found 
from  equations  (D2). 

The  intensity  of the'vortex sheet  over a curvilinear  element  is  approxi- 
mated  using  the  Lagrangian  interpolation  polynomials  and  the  known  in- Li 
tensity of the  vortex  sheet  at  the  three  nodes  of  the  element.  At  an  arbit- 
rary  point  on  the  curvilinear  element,  the  intensity  of  the  vortex  sheet  is 
written  as 

3 

j =1 
where  the  values  of y are  the  nodal  values  of  the  vortex  sheet  intensity. 
The  Lagrangian  polynomials  used  in  equation  (D7)  are 

i 

1 L1 = 5 + 

2 L 2 = 1 - E  

where 5 is  the  local  coordinate  defined  over  the  element. 



APPENDIX E 

Representation of the  Two-Dimensional  Fluid  Region 

The  two-dimensional  fluid  region A is  represented  by  subdividing  it  into a 
finite  number of finite-elements. A finite--element  mesh  is  illustrated  in  fig- 
ure E . l .  The  flow  variables,  vorticity w and  velocity  v=(u,v),  are  sought 
at  the  nodes.  Two  types of finite-elements  are  used  to  diTide  the  fluid  reg- 
ion A :  isoparametric  quadrilateral  finite-elements  and  isoparametric  triangu- 
lar  finite-elements. 

Figure E . l  Illustration of the  finite-element  mesh. 

Isoparametric  finite-elements  better  approximate  the  curved  boundary of the 
wing.  Considering  the  local  coordinates (c,q) and  the  corresponding  Cartesian 
coordinates  (x,y), a point  in  the (S,q) plane  is  mapped  into  the  correspond- 
ing  point  in  the  (x,y)  plane  by 

and 
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m 

i=l 
Y(6,tl) = c Ni(S,tl)Yi 

Here,  the  coordinates  (xi,y.)  are  the known coordinates of the  finite-element 
nodes.  Each  finite-element  is  defined  by m nodes.  The  shape  functions,  Ni, 
are  expressed  in  terms  of  the  local  coordinates (5,n) which  range  between  un- 
ity  and  zero  within  the  element.  Local  derivatives of the  shape  functions  are 
expressed  in  terms of their  Cartesian  derivatives  by  the  chain  rule. 

1 

or  in  matrix  form 

aNi 
ae  - =  

= I  

aN . aN . 
1 ax r 1  x 

aNi - 
ax 

aNi 
- 
aY . ,  

= [JI 

where  [J] is the  Jacobian.  The  Cartesian  derivatives of the  shape  functions 
can  then-be  found  in  terms  of 

Figure E . 2  illustrates  the 

their  local  derivatives  as 

[JI -l 

isoparametric  quadrilateral  finite-element. 
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1 (-l,-l) 5 T ( O , - l )  2 (1 , -1)  

Figure E.2 The isoparametric quadrilateral finite-element. 

The shape functions used for quadrilateral finite-el.ement geometry are 

N6 = - ( 1 - E 2 - 5 n + n )  1 2 
2 

N7 = - ( 1 + 5 - 5 1 1  - n )  1 
2 

2 2  
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I' 

Using  equations  (El)  and  (EZ),  the  elements of the  Jacobian  for  the  quadrilat- 
eral  element  may  be  written  as 

" ax 
8 aNi 

an - i=l c T Y i  

The  derivative of the  shape  functions  with  respect  to  the  local  coordinates  is 
computed  directly  from  equation  (E6). 

The  isoparametric  triangular  finite-element  is  illustrated  in  figure  E.3. 
Local  coordinates,  used  for  the  triangular  finite-element,  are  the  area  coordin- 
ates  (R1,R2,R3)  corresponding  to  the  Cartesian  coordinate  point  (x,y).  The 
applied  shape  functions  are  quadratic.  The  corner  nodes  are 

N1 = R1 ( 2R1 - 1 ) 

N2 = R 2  ( 2R2 - 1 ) 

and  the  mid-side  nodes 

N4 = 4R1R2 

N5 = 4R2R3 

N6 = 4R3R1 

The  Cartesian  derivatives  for  the  triangular  finite-element  shape  functions 
are  expressed  in  terms of their  local  derivatives.  Letting 

then by the  chain  rule 
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/ R2 

Using  equations  (ElO),  the  terms of the  Jacobian  are  found from equations 
(Ell) as 
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The  remaining  derivatives of the  coordinates  (x,y) on the  right-hand  side of 
equation  (E12)  are  found  in  terms of the  area  coordinates (R R R ) using 
equations  (El)  and  (E2). 1' 2' 3 

Over  each  finite-element,  the  vorticity  and  velocity  components  are  approxi- 
mated  by  their  nodal  values w u  and v and  the  nodal  shape  functions Ni. 
Then i'  i' i 

and 

The  super-script e indicates an element  vector  or  matrix. 
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